jan 162018
 

OK, hier wordt ik dus enthousiast van, al is het niet eens echt heel veel goedkoper dan de kant en klare oplossing waar ik vorige week mee geëxperimenteerd heb. Het blijkt namelijk mogelijk om een node met sensor voor het LoRaWAN netwerk / The Things Network te bouwen op basis van een ATtiny85!

Dus, gewoon op basis van die microprocessor, die zo’n 80 eurocent kost als je hem uit China laat komen en die we hier tot nu toe gebruikten om LEDs in een kleine kerstboom aan te sturen of papercircuit kerstkaarten te maken. Diezelfde chip kun je gebruiken als de basis van een meetapparaat waarmee je de lokale temperatuur, vochtigheid en luchtdruk tot kilometers ver door kunt geven.

Ok, ok, je hebt nog een paar andere dingen nodig. Bijvoorbeeld de sensor voor die drie waarden, in dit geval een BME280, die kost zo’n 2,5 euro per stuk. En je hebt natuurlijk ook een chip nodig die het LoRa-deel van de communicatie voor zijn rekening neemt. Er wordt hier gebruik gemaakt van een RMF95  en die kost nog steeds nog een euro of 4-5. Betekent dus dat het meetstation (zonder behuizing, bekabeling, batterijhouder etc) nog steeds zo’n 7-8 euro per stuk kost. Dat is maar een paar euro goedkoper dan die kant en klare oplossing die ik kocht.

Maar in de categorie “omdat het kan” en “omdat het cool is om te zien dat zo’n klein ding zoiets indrukwekkends kan” schreeuwt het natuurlijk om een test (sorry, volgende vakantie duurt nog even). De beschrijving hier gaat nu nog uit van het resetten van pin PB5 zodat het een gewone I/O pin wordt (ipv de reset pin), maar dan kun je daarna niet/slecht heel ingewikkeld de ATtiny85 herprogrammeren. Op het forum wordt al gesproken over een oplossing waarbij dat niet langer nodig is.

Bij de beschrijving staat niet hoe lang deze specifieke constructie mee kan op een set batterijen. Ook dat zou een leuke test zijn. Gaat op het verlanglijstje om te bouwen.

Deel dit bericht:

RP-SMA versus SMA

 Gepubliceerd door om 22:41  Hardware, LoRaWAN
jan 142018
 

Als je een antenne wilt aansluiten op een node voor bv The Things Network dan heb je meestal een kabeltje van het printplaatje naar een SMA aansluiting waar je de antenne op vast draait.

Het is belangrijk om even goed te kijken of daar niet “RP-” (reversed polarity) voor staat, want die twee passen niet op elkaar.

Het idee is dus dat je een SMA Male (bv je antenne), mét pinnetje, aansluit op een SMA Female (het kabeltje naar je printplaat, zónder pinnetje). Heb je echter een RP-SMA antenne, dan heeft de antenne geen pinnetje en moet juist de aansluiting aan de kabel een pinnetje hebben.

Goed, kijk even naar de plaatjes: een SMA Male hoort bij een SMA Female en een RP-SMA Male hoort bij een RP-SMA Female. Andere combinaties gaan in het geval van zo’n antenne / kabel niet werken.

(als je dit nooit nodig gaat hebben in je leven, dan geen probleem, maar ik had een kabeltje stuk en moest een vervangend kabeltje vinden/bestellen)

Deel dit bericht:
jan 132018
 

Time for part 2 of the post about getting the “cheap” Chinese ESP32 + SX1276 board connected to The Things Network.

The picture in this and the other post shows the board with a DHT11 temperature and humidity sensor already connected. I stopped using the small case that was on sale, because with the pinheaders soldered to the board and dupont cables connected to it, it no longer fitted.

Also, I am no longer using the small antenna that was provided with the board. I seem to have accidentally twisted the cable that you use to connect the SMA socket to the U.FL IPX connector on the board. The only suitable antenna I had available, was one that was provided as part of the LoPy kickstarter kits (which apparently is different from the antenna sets they sell now). The antenna I got in the kit is a RP-SMA antenna meaning the cable is also RP-SMA. Long story short: I can connect the LoPy cable + LoPy antenna to the board, but the the provided small antenna won’t fit on the LoPy cable. With the LoPy antenna combi I’ve been able to get about 500 meters range outdoors, combined with the single channel LoPy nanogateway. Which is absolutely not bad at all, also given that I’m fixed not to just one channel there but also to SPF7. I’ll do further comparisons once the replacement cable has arrived.

So, the DHT11 sensor. It helped that I managed to figure out that the provided pinout chart was incorrect. Once I know to which actual ports the DHT11 was connected, it was a matter of integrating the library and code into the existing code.  To keep the number of things that could go wrong manageable, I first tested jut the DHT11 code. I provided an example here. If that doesn’t work, don’t bother with the connection to TTN.

Lees verder….

Deel dit bericht:
jan 132018
 

The previous post about the LoRa board I bought via Aliexpress, I did in Dutch. I should have know that, like often happens with the more technical posts on my blog, the majority of people interested in it are not from the Netherlands.
So, this follow-up post about connecting a sensor to it, I’ll do in English again.

I will do the quick summary of the previous post first, so you’ll have an all-in-one topic:

This board was the first one I bought of Aliexpress. It was cheap, €13,9 incl. shipping for ESP32 + SX1276 + 0.96 inch OLED. ESP32 means WiFi (like you have with the ESP8266) *and* Bluetooth build in. If you compare that to a LoPy (about 50 euros) or a Marvin (about 85 euros), that is cheap. Problem though with Aliexpress is that you don’t always get a nice manual with the device.
Luckely there is a very active forum at The Things Network, and they have a topic specific for this combination of ESP32 and SX1276 chip. A number of people, much smarter than me, took the time there to figure out how to setup the board. All I had to do is go through their posts.

Lees verder….

Deel dit bericht:
jan 102018
 

Tot voor kort had ik 2 verschillende LoraWAN nodes in huis: een tweetal LoPy‘s, waarvan er eentje dienst doet als single channel gateway en een Marvin. Beide zijn niet bijzonder goedkoop, een LoPy met ontwikkelbordje en antenne kost zo’n 50 euro excl. verzendkosten. Een Marvin kost bijna 85 euro excl. verzendkosten. Niet echt sensoren dus die je ergens “kwijt” wilt raken. Terwijl een LoraWAN sensor toch juist vaak op een plek moet komen te hangen die iets verder van alles weg is (zoals sensoren langs een weg die fijnstof meten of zo).

Je kunt zelf een sensor bouwen door een chip te bestellen voor de communicatie, een ESP8266 te kopen, antenne etc en dan solderen. Maar dat kost tijd en extra werk.  De “868MHz/915MHz SX1276 ESP32 LoRa 0.96 Inch Blue OLED Display Bluetooth WIFI Lora Kit 32 Module IOT Development Board for Arduino” zoals de listing op AliExpress voluit luidt, is een voorbeeld van een tussenweg: voor €13,90 incl. verzendkosten heb je een ESP32 + SX1276 chip op een ontwikkelbord. Als je het LCD-scherm dat er dan op zit niet nodig hebt, kun je nog een paar euro besparen en €10,29 betalen incl. verzendkosten. Het is niet mijn eerste node op basis van een ESP32, ook de LoPy maakt daar gebruik van, maar het was wel de eerste die ik via AliExpress bestelde. En ik wist dat het daar bestellen een keerzijde heeft: documentatie is niet altijd voorhanden.

Gelukkig is er ook een heel actief forum bij The Things Network waar een heel topic specifiek voor deze combinatie van ESP32 en SX1276 chip (inclusief het OLED schermpje) ingericht is. En daar hadden sinds oktober 2017 al een paar slimme mensen alles uitgezocht wat ik nodig had om ook mijn exemplaar aan de praat te krijgen. En omdat het een proces is dat ik over een paar maanden zeker niet meer uit mijn hoofd weet te herhalen, documenteer ik het hier weer even.

Lees verder….

Deel dit bericht:
jan 032018
 

“Papa, hoe werkt deze dan eigenlijk?”. Dat was de vraag die ik kreeg toen mijn oudste dochter het zakje zag liggen met een van de bestellingen van AliExpress. Eerder vandaag hadden we namelijk samen naar deze blogpost gekeken toen het ging over de verschillende manieren waarop de fijnstofmeters verbinding maken met de ESP8266. Toen ging het over UART, SPI en I2C (als jou dat niets zegt, lees dan ook even die blogpost!).

Er waren twee manieren om erachter te komen op welke manier dit kleine LCD verbonden moest worden met een Arduino (of ESP8266): foetelen (!) en op de pagina van de verkoper kijken of naar de tekst bij de pinnen kijken. Dat was gemakkelijk: naast GND en VCC waren er maar 2 pinnen over, dus was het geen SPI, en met SDA en SDL bij de andere twee pinnen was het duidelijk: het was een I2C verbinding.

“Maar hoe zorg je er dan voor dat er tekst op komt? Moet dat dan pixel voor pixel?”, was de vervolgvraag. Ja, maar gelukkig ook weer niet. Daar hebben mensen namelijk “bibliotheken” voor gemaakt die een groot deel van de complexiteit verbergen. “Laten we het gewoon een uitproberen”, zei ik. Nu was de pagina van de verkoper toch nog handig, want we moesten nog een paar dingen meer weten, bijvoorbeeld of hij 3V of 5V wilde hebben. Als de verkoper die info niet online had staan, dan was even op de achterkant van het LCD scherm kijken ook handig. Daar stond namelijk OLED-091, en als je dat in Google invoert krijg je een zee van informatie. Het LCD-scherm kan zowel op 3V als op 5V en heeft een SSD1306 chip. Adafruit heeft daar een library voor gemaakt voor de Arduino en ook voor de ESP8266  is er eentje te vinden. Eitje dus om dit aan de praat te krijgen. Of zo dachten we.

Het aansluiten van de kabels, het installeren van de bibliotheken, het openen en draaien van een van de voorbeelden, dat ging inderdaad zonder problemen. Maar toen kwam de vraag: “Kunnen we ook ons eigen plaatje laten bewegen??”. Ehm, ja, maar dat duurde uiteindelijk een uur voordat het werkte. Daarom ook een blogpost om vast te leggen hoe we het uiteindelijk voor elkaar gekregen.

Lees verder….

Deel dit bericht:
jan 012018
 

Als je dit weblog regelmatig bezoekt, dan weet je dat we afgelopen week druk bezig zijn geweest met het last-minute deelnemen aan een experiment dat het RIVM, samen met anderen nu voor het tweede achtereenvolgende jaar uitgevoerd hebben: het meten van de hoeveelheden fijnstof tijdens de jaarwisseling.

Daarbij wordt gebruik gemaakt van relatief goedkope sensoren die door particulieren ook zelf opgehangen kunnen worden. Dat brengt uiteraard veel uitdagingen met zich mee, zo hebben wij zelf ook gemerkt toen we wilden deelnemen. Naar aanleiding van de aankondiging heb ik al een tweetal blogposts geschreven naar aanleiding van informatie die ik sindsdien gevonden had: blogpost #1 en blogpost #2. Zoals zo veel dingen lijkt het eenvoudig, maar komt er toch heel wat meer bij kijken als je het goed wilt doen.

Omdat het voor ons onmogelijk was om een Nova SDS011 sensor tijdig in huis te krijgen, zijn we aan de slag gegaan met een Shinyei PPD 42NJ samen met een BME280, een super kleine geïntegreerde sensor voor zowel luchtvochtigheid, temperatuur, luchtdruk en hoogte. Dat geheel werd in een PVC T-stuk bevestigd en achter het Frans balkon van ons huis opgehangen. De gebruikte code was een combinatie van de code van het RIVM van vorig jaar (voor de Shinyei) met de code van dit jaar (voor de SDS011 + BME280). Ik heb de code nog iets verder aangepast op basis van het script waar ik eerder over schreef zodat we ook zelf de ruwe waarden van de sensoren konden volgen. Dat was maar goed ook, want op de officiële site bleef de lijn van de meting bijna vlak:

 Sowieso worden voor de Shinyei sensoren alleen de ruwe PM2.5 metingen doorgegeven die dan op de server omgerekend zouden moeten worden naar µg/m3. Of dat hier helemaal goed gaat weet ik niet, maar omdat onze sensor pas 2 dagen voor de jaarwisseling online kwam ontbrak het aan de mogelijkheid hier nog echt contact over te hebben met het RIVM. Voor de duidelijkheid: vanuit het RIVM werd de afgelopen heel snel, vriendelijk en uitvoerig via de mail gecommuniceerd. Niets dan complimenten daarover!

De stevige piek die je in de afbeelding ziet was toen ik na registratie toch even het script met de omrekening gebruikt had (foei). Maakt niet uit, de grafiek die ik in Google Sheets liet maken (met dat stukje eruit geknipt) laat wél voldoende verschil tussen (ruwe) waarden zien om interessant te zijn.

Lees verder….

Deel dit bericht:
dec 302017
 

Een blogpost over een oplossing waarvan ik zelf inmiddels al geconstateerd heb dat hij tóch niet zo handig is? Moet kunnen. Want ik wil in ieder geval even documenteren hoe ik e.e.a. voor elkaar gekregen heb. Wie weet heeft iemand anders er toch nog wat aan.

Naast de fijnstofsensor voor het RIVM experiment heb ik er ook eentje gemaakt die ik in de woonkamer opgesteld heb. Gewoon om te zien hoe in huis eventueel het niveau fijnstof zou stijgen als we in de keuken aan het koken waren, of een paar uur wafels stonden te bakken.

Ik wilde de data snel kunnen verwerken zonder teveel gedoe met databases of zo, zou het niet handig en mogelijk zijn om de data op te slaan in een Google Sheet?

Ik weet inmiddels dat als ik het kan verzinnen, iemand anders dat ongetwijfeld ook al gedaan heeft. Zo ook nu. En lang geleden al.In 2011 schreef Martin Hawksey een script waarmee  je via een URL data door kunt geven aan  een Google Sheet. Je moet een Sheet aanmaken en dan in de Script editor het script inplakken. Eenmalig moet je dan de Setup() procedure uitvoeren en via Publish > Deploy as web app het script publiceren. Daarbij moet je er dan voor kiezen om het script ook voor “Anonymous” beschikbaar maken. Google zal dan moord en brand schreeuwen omdat het script niet door hen getest is etc.

De werking is dan eenvoudig. Op de eerste rij van de sheet zet je de namen van de waarden die je wilt doorgeven. Tip: noem de eerste kolom “Timestamp”, dan voegt het script automatisch datum en tijd in waarop de nieuwer data is ingevoerd.

Daarna kun je via GET of POST de data doorsturen naar de Google Sheet waarbij elke waarde gelijk moet zijn aan de titel van een kolom (hoofdlettergevoelig).

Ik gebruikte een NodeMCU ESP8266. Omdat Google een beveiligde verbinding gebruikt moet je gebruik maken van een andere bibliotheek dan normaal:

#include <WiFiClientSecure.h>
en
WiFiClientSecure client2;

Lees verder….

Deel dit bericht:
dec 282017
 

OK, één bericht nog dan voordat ik ga schrijven over onze eerste fijnstofmeter die (als alles volgens plan gaat) ook tijdens de jaarwisseling online te volgen is.

Naast de bestelde Shinyei PPD42 die vorig jaar door het RIVM gebruikt is, hebben we een tweetal DSM501 modules van Samyong in huis en blijkt er nog een Plantower PMS5003 onderweg te zijn die (vanwege een wat vaag leveringsprobleem) waarschijnlijk ingehaald wordt door de Novafitness SDS011 die het RIVM dit jaar gebruikt (en die ook door o.a. OK Lab Stuttgart gebruikt wordt).

Dus was ik verder op zoek gegaan naar info specifiek voor die sensoren.

In dit bericht over de DSM501 module wordt ook gesproken over de Air Quality Index (IAQ, IQA) en de bijbehorende verschillen tussen de  Europese Common Air Quality Index (CAQI) die in 5 stappen van 0 tot 100 loopt en de 6 niveaus van de AQI index die in de VS en China gebruikt worden en die van 0 tot 500 (of meer) loopt. En er blijken meer smaken te zijn. Het bericht legt uit hoe de verschillende indexen te berekenen.

Op het forum van The Things Network kun je een hele thread vinden over sensoren met de nodige verwijzingen. Hier is een beschrijving te vinden van (nog) een oplossing gebaseerd op LoraWAN

Het aansluiten van de PMS5003 gaat net weer wat anders dan van de andere sensoren, maar ook daar is informatie over te vinden online. Hij maakt gebruik van een seriële verbinding, net zoals (zo begrijp ik van het RIVM) de SDS011.

Dit bericht ten slotte is niet erg positief over de betrouwbaarheid van de PPDN402 en op dit blog deden ze een test in de keuken waarbij de conclusie was dat het aantal deeltjes dat daar de lucht in geslingerd wordt minstens zo erg is als buiten.

Lees verder….

Deel dit bericht:

Kerstster met ATTiny85 en NeoPixel

 Gepubliceerd door om 14:59  Hardware
dec 252017
 

Het was zo’n projectje van Marit waarbij ik nog “even” de laatste details moest verzorgen: de NeoPixel LED die met dank aan een ATTiny85 en een knoopcelbatterij er voor zou zorgen dat de ster licht zou geven in wisselende kleuren. Ik had de LEDs besteld via deze leverancier op AliExpress maar de exacte aansturing was nog even puzzelen geweest de afgelopen weken (tussen alle andere werk door). De NeoPixel heeft als voordeel ten opzichte van een RGB LED dat je maar 3 aansluitingen nodig hebt op een processor, ook als je meerdere LEDs wilt aansturen. De 4e pin van een LED is namelijk de Data-out. Je stuurt de kleurcodes voor alle LEDs via 1 datapoort naar buiten en elke LED “pakt” alleen de kleurcode die voor hemzelf bedoelt is (de eerste code in de keten) en stuurt dan de rest door. Je sluit dus de Data-out poort van de eerste LED aan op de Data-in poort van de tweede LED etc.

Nou had ik maar 1 LED en een knoopcel, dus geen gedoe met weerstanden etc.
Ontwerpvraag was of het geheel ín de ster kon hangen of erbuiten moest. Het papier bleek uiteindelijk dusdanig dun (wat handig was omdat het licht er dan ook doorheen gaat) dat het erbuiten moest. Dat betekende 3 draden de ster in. Het was daarna even zoeken naar de draden die niet te dik maar ook niet onhandelbaar dun waren.

Ik heb de pootjes van de LED in Dupont stekkers gestoken. Normaal koop je kabeltjes met de stekkers (mannetje of vrouwtje) er al aan, maar omdat ik draden nodig had van elk 50 cm lang, moest ik met de tang aan de slag. Soms vragen mijn kinderen zich af waarom papa zoveel spullen in huis heeft…soms begrijpen ze het… 🙂

 

Deel dit bericht: